
MarDRe: User’s Guide

Authors:

Roberto R. Expósito, Jorge Veiga, Jorge González-Domı́nguez

and Juan Touriño

January 23, 2019

MarDRe User’s Guide

Contents

1 Introduction 3
1.1 Citation . 3

2 Prerequisites 3

3 Execution 4
3.1 Command-line arguments . 4
3.2 Examples . 5
3.3 Compression support . 5
3.4 Configuration . 6

4 Compilation 7

5 Contact 7

2

MarDRe User’s Guide

1 Introduction

MarDRe [1, 2] is a de novo MapReduce-based parallel tool to remove duplicate and near-
duplicate DNA reads through the clustering of single-end or paired-end sequences from
FASTQ/FASTA datasets. Duplicate reads can be seen as identical or nearly identical
sequences with some mismatches. Depending on the application scenario, duplicate or
near-duplicate reads do not provide any interesting biological information but can increase
memory requirements and computational time of downstream analysis. This tool allows
researchers and bioinformatics to avoid the analysis of not necessary reads, reducing the
time of subsequent procedures with the dataset (e.g., assemblies, mappings, etc.).

MarDRe is the Big Data counterpart of ParDRe [3, 4], which employs HPC technolo-
gies (i.e., hybrid MPI/multithreading) to reduce runtime on multicore systems. Instead,
MarDRe takes advantage of the MapReduce programming model originally developed by
Google [5] to significantly improve ParDRe performance on distributed systems, specially
on cloud-based infrastructures. Written in pure Java to maximize cross-platform com-
patibility, MarDRe is built upon the open-source Apache Hadoop project [6], the most
popular distributed computing framework for scalable Big Data processing.

This tool is distributed as free software and is publicly available at [2] under the GPLv3
license [7].

1.1 Citation

If you have used MarDRe in your research, please cite our work using reference [1].

2 Prerequisites

In order to use MarDRe, the prerequisites are:

1. Make sure you have Java Runtime Environment (JRE) version 1.7 or above

2. Make sure you have a working Hadoop distribution version 2.2 or above [8]

• HADOOP HOME environmental variable must be set accordingly

3. Untar the downloaded MarDRe distribution

• On Linux/Mac OS, just follow the instructions below:

[user@host ~]$ tar xzf MarDRe -v1.4.tar.gz

• Alternatively use your preferred archive extraction tool

4. Set MARDRE HOME and PATH environmental variables

• On Linux/Mac OS you can set them in your profile or your shell configuration
files (e.g., .bashrc). Follow the instructions below:

[user@host ~]$ export MARDRE_HOME =/path/to/mardre

[user@host ~]$ export PATH=$MARDRE_HOME/bin:$PATH

3

MarDRe User’s Guide

3 Execution

MarDRe can be executed by using the provided mardrerun command, which launches
the MapReduce jobs to the Hadoop cluster. The only compulsory argument is the input
dataset for single-end executions, or two datasets in case of paired-end executions.

The input FASTQ/FASTA datasets must be stored in the Hadoop Distributed File
System (HDFS) [9]. MarDRe versions greater than 1.1 support compressed datasets
(see Section 3.3 for more information about this topic). Versions greater than 1.2 use
the Hadoop Sequence Parser (HSP) library [10] to read the input datasets for improved
overall performance.

3.1 Command-line arguments

The available command-line arguments are:

• -i. Compulsory both in single-end and paired-end scenarios. String with the HDFS
path to the input sequence file in FASTA/FASTQ format.

• -p. Compulsory only in paired-end scenarios. String with the HDFS path to the
second input sequence file in FASTA/FASTQ format.

• -o. Optional. String with the file name for the first output file in FASTA/FASTQ
format. The default value is the same as the first input file name followed by
.NonDup.

• -r. Optional. String with the file name for the second output file in FASTA/FASTQ
format in paired-end scenarios. The default value is the same as the second input
file name followed by .NonDup.

• -q. Specify that input sequence files are in FASTQ format. By default, MarDRe
tries to autodetect the input format, but if input files are compressed the user must
specify the appropriate argument.

• -f. Specify that input sequence files are in FASTA format. By default, MarDRe
tries to autodetect the input format, but if input files are compressed the user must
specify the appropriate argument.

• -m. Optional. Integer with the number of allowed mismatches to identify two reads
as equivalent. The default value is 0.

• -l. Optional. Integer with the prefix length. During the mapping phase, MarDRe
emits as key the first l encoded bases of each read. Then, reads of the same key
are compared in the reducing phase. Higher prefix-length usually leads to shorter
computation but can miss some duplicates. The loss of accuracy is observed when
removing near-duplicate reads. Reads in the same group have exactly the same
prefix (i.e., mismatches are not allowed in the prefix). The longer the prefix, more
near-duplicate can be missed. Lets use as example an scenario where we try to
compress near-duplicate reads with up to one mismatch. If we use a prefix of length
20 to compare two reads that only have one mismatch in position 16, MarDRe stores
them in different groups, they are never compared, and both reads will be in the
output. Otherwise, with a prefix of length 15 MarDRe compares them and, as only
one base is different, discards one of them. The default value is 20.

4

MarDRe User’s Guide

• -c. Optional. Integer with the number of bases to compare for each read (starting
from the beginning of the sequence). It must be equal or greater than the prefix
length and equal or less than the sequence length. The default value is equal to the
sequence length (i.e., all bases are compared).

• -nr. Optional. Integer with the number of reducers. The default value is 1.

• -v. Print out the version of the program and exit.

• -h. Print out the usage of the program and exit.

3.2 Examples

The following command removes the duplicates of identical reads (no mismatches) of a
single-end dataset using a prefix length of 15 and 8 reducers:

[user@host ~]$ mardrerun -i dataset.fastq -l 15 -nr 8

The following command shows a similar example but for paired-end execution, allowing
two mismatches and using the default prefix length (20) and 8 reducers:

[user@host ~]$ mardrerun -i dataset1.fastq -p dataset2.fastq -m 2

-nr 8

3.3 Compression support

MarDRe supports the processing of input datasets compressed with Gzip (i.e., .gz exten-
sion) and BZip2 (i.e., .bz2 extension) codecs. However, when considering compressed data
that will be processed by Hadoop, it is important to understand whether the underlying
compression format supports splitting, as many codecs need the whole input stream to
uncompress successfully.

On the one hand, it is impossible to start reading at an arbitrary point in a Gzip file
and therefore impossible for a map task to read its input split independently of the others.
For this reason, Gzip does not support splitting and Hadoop will not split the gzipped
input dataset. This will work, but at the expense of performance: a single map will parse
the whole input dataset, which prevents parallelism during the parsing of the reads during
the map phase, while the duplicate removal step can still be performed in parallel during
the reduce phase. In terms of performance, it would be probably better to first uncompress
the input dataset before storing it in HDFS. On the other hand, BZip2 does compression
on blocks of data and later these compressed blocks can be decompressed independent of
each other, so it does support splitting. Therefore, BZip2 is the recommended codec to use
with Hadoop for best performance and parallelism. Note that if you are using compressed
input datasets, MarDRe will also compress the output datasets using the same codec.

Finally, even if you are using uncompressed input datasets, Hadoop may benefit from
compressing the intermediate output of the map phase in both single-end and paired-end
modes. Since the map output is written to disk and transferred across the network to
the reducer nodes, by using a fast compressor such as snappy, you may get performance
gains simply because the volume of network data to transfer is reduced. Moreover, the
output files of the intermediate MapReduce jobs needed in paired-end mode when using

5

MarDRe User’s Guide

a reduce-side join (see next section) can also be compressed, thus reducing disk I/O
overhead between jobs. MarDRe supports both types of intermediate compression using
the snappy codec, which can be configured by setting COMPRESS MAP OUTPUT and
COMPRESS INTERMEDIATE OUTPUT options, as shown next.

3.4 Configuration

MarDRe can be configured by means of the mardre.conf file located at the etc directory.
The available parameters are:

• MERGE OUTPUT (boolean). Merge output files into a single file stored in HDFS.
The default value is false.

• DELETE TEMP (boolean). Delete intermediate files created by Hadoop (if any).
The default value is true.

• PAIRED END MAP JOIN (boolean). Enable the use of a map-side join in paired-
end scenarios when set to true, otherwise a reduce-side join is performed. The
default value is true, which usually leads to a better performance.

• COMPRESS MAP OUTPUT (boolean). Enable the compression of the intermedi-
ate map output using the snappy codec. It requires the snappy library installed on
the system and the Hadoop native library (i.e., libhadoop) compiled with snappy
support. The default value is false.

• COMPRESS INTERMEDIATE OUTPUT (boolean). Enable the snappy compres-
sion of the intermediate output files in paired-end scenarios using a reduce-side join
(the same requirements apply as before). The default value is false.

• INPUT BUFFER SIZE (integer). The buffer size in bytes that is used for input
read operations. It should probably be a multiple of the hardware page size (e.g.,
4096). The default value is 65536 bytes.

• IN MAPPER COMBINER (boolean). Enable the use of the in-mapper combiner
when possible. The default value is false.

• IN MAPPER COMBINER CACHE SIZE (integer). Maximum number of entries
cached by the in-mapper combiner. The default value is 65536 entries.

• CLUSTER LIST INITIAL CAPACITY (integer). Initial capacity of the ArrayList
used to store reads during duplicate removal. The default value is 65536 entries.

• HDFS BASE PATH (string). Base path on HDFS where MarDRe stores the output
files as well as temporary intermediate files. The user running MarDRe must have
write permissions on this path. The default value is blank, which means to use the
HDFS user’s home directory.

• HDFS BLOCK REPLICATION (short). HDFS block replication factor for output
sequence files. The default value is 1.

6

MarDRe User’s Guide

4 Compilation

In case you need to recompile the MarDRe distribution, the prerequisites are:

1. Make sure you have Java Development Kit (JDK) version 1.7 or above

2. Make sure you have a working Apache Maven distribution version 3 or above

• https://maven.apache.org/install.html

In order to build the JAR distribution, just execute the following Maven command
from within the MarDRe root directory:

[user@host mardre]$ mvn package

The first time you execute this command, Maven will download all the plugins and
related dependencies it needs to fulfill the command. From a clean installation of Maven,
this can take quite a while. If you execute the command again, Maven will now have
what it needs, so it will be able to execute the command much more quickly.

5 Contact

MarDRe has been developed in the Computer Architecture Group [11] at the University
of A Coruña [12] by the following authors:

• Roberto R. Expósito: http://gac.udc.es/~rreye

• Jorge Veiga: http://gac.udc.es/~jveiga

• Jorge González-Domı́nguez: http://gac.udc.es/~jgonzalezd

• Juan Touriño: http://gac.udc.es/~juan

To report any question, bug, requirement or information about MarDRe, feel free to
contact us at [2].

7

https://maven.apache.org/install.html
http://gac.udc.es/~rreye
http://gac.udc.es/~jveiga
http://gac.udc.es/~jgonzalezd
http://gac.udc.es/~juan

MarDRe User’s Guide

References

[1] Roberto R. Expósito, Jorge Veiga, Jorge González-Domı́nguez, and Juan Touriño.
MarDRe: efficient MapReduce-based removal of duplicate DNA reads in the cloud.
Bioinformatics. Bioinformatics, 33(17):2762–2764, 2017.

[2] MarDRe webpage. http://mardre.des.udc.es.

[3] Jorge González-Domı́nguez and Bertil Schmidt. ParDRe: faster parallel duplicated
reads removal tool for sequencing studies. Bioinformatics, 32(10):1562–1564, 2016.

[4] ParDRe webpage. https://sourceforge.net/projects/pardre.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[6] Apache Hadoop. http://hadoop.apache.org.

[7] GNU General Public License version 3 (GPLv3). https://www.gnu.org/licenses/
gpl-3.0.en.html.

[8] Apache Hadoop Cluster Setup. http://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-common/ClusterSetup.html.

[9] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop distributed file system. In Proceedings of the 26th IEEE Symposium on Mass
Storage Systems and Technologies (MSST’10), pages 1–10, Incline Village, NV, USA,
2010.

[10] HSP: Hadoop Sequence Parser library for FASTQ/FASTA datasets. https://

github.com/rreye/hsp.

[11] Computer Architecture Group. http://gac.udc.es/english.

[12] University of A Coruña. http://www.udc.gal/index.html?language=en.

8

http://mardre.des.udc.es
https://sourceforge.net/projects/pardre
http://hadoop.apache.org
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://github.com/rreye/hsp
https://github.com/rreye/hsp
http://gac.udc.es/english
http://www.udc.gal/index.html?language=en

	Introduction
	Citation

	Prerequisites
	Execution
	Command-line arguments
	Examples
	Compression support
	Configuration

	Compilation
	Contact

